Diego Freire | Agência FAPESP – Pesquisadores do Instituto de Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP), em São Carlos (SP), e da Universidade Brown, em Rhode Island, nos Estados Unidos, desenvolveram uma ferramenta computacional que utiliza técnicas inovadoras de segmentação de imagem para facilitar a tarefa de modificar uma imagem digital a partir da seleção de algum elemento ali existente que se queira destacar ou excluir.
A segmentação de imagens é um campo das ciências de computação dedicado ao processamento de imagens digitais e ao reconhecimento de padrões. A inovação está na incorporação das coordenadas de Laplace, um operador matemático utilizado para estudar fenômenos em diversas áreas da ciência, como astronomia, mecânica dos fluidos e computação gráfica.
A partir da combinação dessas coordenadas os pesquisadores desenvolveram um protótipo de um programa de computador capaz de segmentar uma imagem de forma fácil e ágil, sem a necessidade de conhecimentos de design gráfico, bastando que o usuário faça pequenas marcações dentro e em torno da parte que gostaria de destacar ou remover.
O trabalho foi desenvolvido no âmbito da pesquisa , conduzida por Wallace Correa de Oliveira Casaca com bolsa de doutorado da FAPESP e orientação de Luis Gustavo Nonato, do ICMC. Casaca contou ainda com a colaboração de Gabriel Taubin, da Universidade Brown, onde ficou por um ano com (BEPE), também concedida pela FAPESP.
“Para processar determinado elemento de uma imagem é preciso que o software saiba exatamente onde começa e termina esse elemento. As coordenadas de Laplace propagam a informação que o usuário riscou dentro e em torno desse elemento até que ela atinja exatamente o limite entre o objeto de interesse e outros elementos da imagem, garantindo a precisão do recorte”, explicou Nonato.
A ferramenta teria múltiplas aplicações, como o recorte de fotografias para fins pessoais ou artísticos e o realce de determinadas áreas de imagens médicas para a identificação de tumores e outros corpos estranhos.
Um artigo apresentando os resultados do trabalho no âmbito de segmentação de imagens foi selecionado para a Conference on Computer Vision and Pattern Recognition (CVPR), realizada pelo Institute of Electrical and Electronics Engineers (IEEE) em Ohio, nos Estados Unidos, em junho. Outro trabalho, que combina a estratégia de segmentação com técnicas para restaurar fotografias, foi aceito pela IEEE International Conference on Image Processing (ICIP), que será realizada em Quebec, no Canadá, em setembro.
Como faz
Usando o software criado pelos pesquisadores, é possível informar ao computador quais elementos se deseja alterar, preservando os demais. Com traços em cores diferentes, sem se preocupar com a precisão do contorno, o usuário seleciona o que sai e o que fica na composição, fornecendo minimamente as informações de que o sistema necessita para, automaticamente, reconhecer o que precisa ser feito e recortar a figura.
“Ao fazer o traço vermelho, é como se o usuário dissesse para o sistema: ‘coloca essas informações que estão aparecendo aqui na minha imagem’. Já com o risco verde é dada outra dica: só deve aparecer o que está dentro dessa área. A ideia é representar a imagem digital por meio de variáveis matemáticas e, então, aplicar modelos matemáticos específicos que visam segmentar, cortar a imagem em pedaços de fácil identificação por parte de um observador humano”, explicou Casaca.
O método pelo qual o computador reconhece o que precisa ser feito a partir das “dicas” do usuário é chamado de segmentação de imagem baseada em sementes.
“É como se fossem sementes lançadas para que a ferramenta possa propagá-las até atingir os limites do objeto. Uma das vantagens desse novo método é que, diferentemente de outras técnicas, ele possibilita o recorte de objetos com alta precisão de ajuste nas bordas. Outros softwares que automatizam o processo acabam levando a resultados diferentes ainda que sejam feitas as mesmas marcações, eliminando partes que não deveriam ser eliminadas porque elas se fundem com outros elementos da imagem”, comparou.
Para avaliar a nova ferramenta, os pesquisadores a empregaram em 50 imagens disponibilizadas em um banco de dados comumente utilizado nesse tipo de pesquisa, o Grabcut, da Microsoft. De acordo com Casaca, os resultados obtidos foram quantitativamente e qualitativamente comparáveis aos métodos que são considerados atualmente o estado da arte.
“Após adaptar a teoria relacionada às coordenadas de Laplace para a tarefa de segmentação de imagens, desenvolvemos uma série de avaliações numéricas e experimentais para averiguar seu grau de eficiência quando comparada a técnicas tradicionais já consolidadas na área. A ferramenta produzida emprega todas as vantagens dessa teoria, como a alta aderência nos contornos de objetos, o baixo custo computacional e a praticidade de utilização, entre outras, para processar o resultado final da segmentação”, disse Casaca.
O pesquisador trabalha agora no projeto de pós-doutorado , também com apoio da FAPESP, e pretende desenvolver uma versão do software para smartphones, ampliando as aplicações da ferramenta.
O protótipo da primeira versão do segmentador está disponível para download gratuito em . Foi disponibilizado também um vídeo explicativo em .